WA3020

Data Engineering Bootcamp using Python and PySpark Training

This hands-on Data Engineering Bootcamp teaches attendees the foundations of data engineering using Python and Spark SQL. Students learn how to build production-ready data-driven solutions and gain a comprehensive understanding of data engineering.
Course Details

Duration

5 days

Prerequisites

  • Some working experience in any programming language (the students will be introduced to programming in Python).
  • Basic understanding of SQL and data processing concepts, including data grouping and aggregation.

Target Audience

  • Data Engineers

Skills Gained

  • Data Availability and Consistency
  • A/B Testing Data Engineering Tasks Project
  • Learning the Databricks Community Cloud Lab Environment
  • Python Variables
  • Dates and Times
  • The if, for, and try Constructs
  • Dictionaries
  • Sets, Tuples
  • Functions, Functional Programming
  • Understanding NumPy and pandas
  • PySpark
Course Outline
  • Big Data Concepts and Systems Overview for Data Engineers
    • Gartner's Definition of Big Data
    • The Big Data Confluence Diagram
    • A Practical Definition of Big Data
    • Challenges Posed by Big Data
    • The Traditional Client - Server Processing Pattern
    • Enter Distributed Computing
    • Data Physics
    • Data Locality (Distributed Computing Economics)
    • The CAP Theorem
    • Mechanisms to Guarantee a Single CAP Property
    • Eventual Consistency
    • NoSQL Systems CAP Triangle
    • Big Data Sharding
    • Sharding Example
    • Apache Hadoop
    • Hadoop Ecosystem Projects
    • Other Hadoop Ecosystem Projects
    • Hadoop Design Principles
    • Hadoop's Main Components
    • Hadoop Simple Definition
    • Hadoop Component Diagram
    • HDFS
    • Storing Raw Data in HDFS and Schema-on-Demand
    • MapReduce Defined
    • MapReduce Shared-Nothing Architecture
    • MapReduce Phases
    • The Map Phase
    • The Reduce Phase
    • Similarity with SQL Aggregation Operations
  • Defining Data Engineering
    • Data is King
    • Translating Data into Operational and Business Insights
    • What is Data Engineering
    • The Data-Related Roles
    • The Data Science Skill Sets
    • The Data Engineer Role
    • Core Skills and Competencies
    • An Example of a Data Product
    • What is Data Wrangling (Munging)?
    • The Data Exchange Interoperability Options
  • Data Processing Phases
    • Typical Data Processing Pipeline
    • Data Discovery Phase
    • Data Harvesting Phase
    • Data Priming Phase
    • Exploratory Data Analysis
    • Model Planning Phase
    • Model Building Phase
    • Communicating the Results
    • Production Roll-out
    • Data Logistics and Data Governance
    • Data Processing Workflow Engines
    • Apache Airflow
    • Data Lineage and Provenance
    • Apache NiFi
  • Python 3 Introduction
    • What is Python?
    • Python Documentation
    • Where Can I Use Python?
    • Which version of Python am I running?
    • Running Python Programs
    • Python Shell
    • Dev Tools and REPLs
    • IPython
    • Jupyter
    • The Anaconda Python Distribution
  • Python Variables and Types
    • Variables and Types
    • More on Variables
    • Assigning Multiple Values to Multiple Variables
    • More on Types
    • Variable Scopes
    • The Layout of Python Programs
    • Comments and Triple-Delimited String Literals
    • Sample Python Code
    • PEP8
    • Getting Help on Python Objects
    • Null (None)
    • Strings
    • Finding Index of a Substring
    • String Splitting
    • Raw String Literals
    • String Formatting and Interpolation
    • String Public Method Names
    • The Boolean Type
    • Boolean Operators
    • Relational Operators
    • Numbers
    • \"Easy Numbers\"
    • Looking Up the Runtime Type of a Variable
    • Divisions
    • Assignment-with-Operation
    • Dates and Times
  • Control Statements and Data Collections
    • Control Flow with The if-elif-else Triad
    • An if-elif-else Example
    • Conditional Expressions (a.k.a. Ternary Operator)
    • The While-Break-Continue Triad
    • The for Loop
    • The range() Function
    • Examples of Using range()
    • The try-except-finally Construct
    • The assert Expression
    • Lists
    • Main List Methods
    • List Comprehension
    • Zipping Lists
    • Enumerate
    • Dictionaries
    • Working with Dictionaries
    • Other Dictionary Methods
    • Sets
    • Set Methods
    • Set Operations
    • Set Operations Examples
    • Finding Unique Elements in a List
    • Common Collection Functions and Operators
    • Tuples
    • Unpacking Tuples
  • Functions and Modules
    • Built-in Functions
    • Functions
    • The \"Call by Sharing\" Parameter Passing
    • Global and Local Variable Scopes
    • Default Parameters
    • Named Parameters
    • Dealing with Arbitrary Number of Parameters
    • Keyword Function Parameters
    • What is Functional Programming (FP)?
    • Concept: Pure Functions
    • Concept: Recursion
    • Concept: Higher-Order Functions
    • Lambda Functions in Python
    • Examples of Using Lambdas
    • Lambdas in the Sorted Function
    • Python Modules
    • Importing Modules
    • Installing Modules
    • Listing Methods in a Module
    • Creating Your Own Modules
    • Creating a Module's Entry Point
  • File I/O and Useful Modules
    • Reading Command-Line Parameters
    • Hands-On Exercise (N/A in DCC)
    • Working with Files
    • Reading and Writing Files
    • Random Numbers
    • Regular Expressions
    • The re Object Methods
    • Using Regular Expressions Examples
  • Practical Introduction to NumPy
    • NumPy
    • The First Take on NumPy Arrays
    • The ndarray Data Structure
    • Getting Help
    • Understanding Axes
    • Indexing Elements in a NumPy Array
    • Understanding Types
    • Re-Shaping
    • Commonly Used Array Metrics
    • Commonly Used Aggregate Functions
    • Sorting Arrays
    • Vectorization
    • Vectorization Visually
    • Broadcasting
    • Broadcasting Visually
    • Filtering
    • Array Arithmetic Operations
    • Reductions: Finding the Sum of Elements by Axis
    • Array Slicing
    • 2-D Array Slicing
    • Slicing and Stepping Through
    • The Linear Algebra Functions
  • Practical Introduction to pandas
    • What is pandas?
    • The Series Object
    • Accessing Values and Indexes in Series
    • Setting Up Your Own Index
    • Using the Series Index as a Lookup Key
    • Can I Pack a Python Dictionary into a Series?
    • The DataFrame Object
    • The DataFrame's Value Proposition
    • Creating a pandas DataFrame
    • Getting DataFrame Metrics
    • Accessing DataFrame Columns
    • Accessing DataFrame Rows
    • Accessing DataFrame Cells
    • Using iloc
    • Using loc
    • Examples of Using loc
    • DataFrames are Mutable via Object Reference!
    • The Axes
    • Deleting Rows and Columns
    • Adding a New Column to a DataFrame
    • Appending / Concatenating DataFrame and Series Objects
    • Example of Appending / Concatenating DataFrames
    • Re-indexing Series and DataFrames
    • Getting Descriptive Statistics of DataFrame Columns
    • Navigating Rows and Columns For Data Reduction
    • Getting Descriptive Statistics of DataFrames
    • Applying a Function
    • Sorting DataFrames
    • Reading From CSV Files
    • Writing to the System Clipboard
    • Writing to a CSV File
    • Fine-Tuning the Column Data Types
    • Changing the Type of a Column
    • What May Go Wrong with Type Conversion
  • Data Grouping and Aggregation with pandas
    • Data Aggregation and Grouping
    • Sample Data Set
    • The pandas.core.groupby.SeriesGroupBy Object
    • Grouping by Two or More Columns
    • Emulating SQL's WHERE Clause
    • The Pivot Tables
    • Cross-Tabulation
  • Repairing and Normalizing Data
    • Repairing and Normalizing Data
    • Dealing with the Missing Data
    • Sample Data Set
    • Getting Info on Null Data
    • Dropping a Column
    • Interpolating Missing Data in pandas
    • Replacing the Missing Values with the Mean Value
    • Scaling (Normalizing) the Data
    • Data Preprocessing with scikit-learn
    • Scaling with the scale() Function
    • The MinMaxScaler Object
  • Data Visualization in Python
    • Data Visualization
    • Data Visualization in Python
    • Matplotlib
    • Getting Started with matplotlib
    • The matplotlib.pyplot.plot() Function
    • The matplotlib.pyplot.bar() Function
    • The matplotlib.pyplot.pie () Function
    • The matplotlib.pyplot.subplot() Function
    • A Subplot Example
    • Figures
    • Saving Figures to a File
    • Seaborn
    • Getting Started with seaborn
    • Histograms and KDE
    • Plotting Bivariate Distributions
    • Scatter plots in seaborn
    • Pair plots in seaborn
    • Heatmaps
    • A Seaborn Scatterplot with Varying Point Sizes and Hues
    • ggplot
  • Python as a Cloud Scripting Language
    • Python's Value
    • Python on AWS
    • AWS SDK For Python (boto3)
    • What is Serverless Computing?
    • How Functions Work
    • The AWS Lambda Event Handler
    • What is AWS Glue?
    • PySpark on Glue - Sample Script
  • Introduction to Apache Spark
    • What is Apache Spark
    • The Spark Platform
    • Spark vs Hadoop's MapReduce (MR)
    • Common Spark Use Cases
    • Languages Supported by Spark
    • Running Spark on a Cluster
    • The Spark Application Architecture
    • The Driver Process
    • The Executor and Worker Processes
    • Spark Shell
    • Jupyter Notebook Shell Environment
    • Spark Applications
    • The spark-submit Tool
    • The spark-submit Tool Configuration
    • Interfaces with Data Storage Systems
    • The Resilient Distributed Dataset (RDD)
    • Datasets and DataFrames
    • Spark SQL, DataFrames, and Catalyst Optimizer
    • Project Tungsten
    • Spark Machine Learning Library
    • Spark (Structured) Streaming
    • GraphX
    • Extending Spark Environment with Custom Modules and Files
    • Spark 3
    • Spark 3 Updates at a Glance
  • The Spark Shell
    • The Spark Shell
    • The Spark v.2 + Command-Line Shells
    • The Spark Shell UI
    • Spark Shell Options
    • Getting Help
    • Jupyter Notebook Shell Environment
    • Example of a Jupyter Notebook Web UI (Databricks Cloud)
    • The Spark Context (sc) and Spark Session (spark)
    • Creating a Spark Session Object in Spark Applications
    • The Shell Spark Context Object (sc)
    • The Shell Spark Session Object (spark)
    • Loading Files
    • Saving Files
  • Spark RDDs
    • The Resilient Distributed Dataset (RDD)
    • Ways to Create an RDD
    • Supported Data Types
    • RDD Operations
    • RDDs are Immutable
    • Spark Actions
    • RDD Transformations
    • Other RDD Operations
    • Chaining RDD Operations
    • RDD Lineage
    • The Big Picture
    • What May Go Wrong
    • Miscellaneous Pair RDD Operations
    • RDD Caching
  • Parallel Data Processing with Spark
    • Running Spark on a Cluster
    • Data Partitioning
    • Data Partitioning Diagram
    • Single Local File System RDD Partitioning
    • Multiple File RDD Partitioning
    • Special Cases for Small-sized Files
    • Parallel Data Processing of Partitions
    • Spark Application, Jobs, and Tasks
    • Stages and Shuffles
    • The "Big Picture"
  • Introduction to Spark SQL
    • What is Spark SQL?
    • Uniform Data Access with Spark SQL
    • Using JDBC Sources
    • Hive Integration
    • What is a DataFrame?
    • Creating a DataFrame in PySpark
    • Commonly Used DataFrame Methods and Properties in PySpark
    • Grouping and Aggregation in PySpark
    • The "DataFrame to RDD" Bridge in PySpark
    • The SQLContext Object
    • Examples of Spark SQL / DataFrame (PySpark Example)
    • Converting an RDD to a DataFrame Example
    • Example of Reading / Writing a JSON File
    • Performance, Scalability, and Fault-tolerance of Spark SQL
  • Lab Exercises
    • Lab 1. Data Availability and Consistency
    • Lab 2. A/B Testing Data Engineering Tasks Project
    • Lab 3. Learning the Databricks Community Cloud Lab Environment
    • Lab 4. Python Variables
    • Lab 5. Dates and Times
    • Lab 6. The if, for, and try Constructs
    • Lab 7. Understanding Lists
    • Lab 8. Dictionaries
    • Lab 9. Sets
    • Lab 10. Tuples
    • Lab 11. Functions
    • Lab 12. Functional Programming
    • Lab 13. File I/O
    • Lab 14. Using HTTP and JSON
    • Lab 15. Random Numbers
    • Lab 16. Regular Expressions
    • Lab 17. Understanding NumPy
    • Lab 18. A NumPy Project
    • Lab 19. Understanding pandas
    • Lab 20. Data Grouping and Aggregation
    • Lab 21. Repairing and Normalizing Data
    • Lab 22. Data Visualization and EDA with pandas and seaborn
    • Lab 23. Correlating Cause and Effect
    • Lab 24. Learning PySpark Shell Environment
    • Lab 25. Understanding Spark DataFrames
    • Lab 26. Learning the PySpark DataFrame API
    • Lab 27. Data Repair and Normalization in PySpark
    • Lab 28. Working with Parquet File Format in PySpark and pandas
Upcoming Course Dates
USD $3,140
Online Virtual Class
Scheduled
Date: Dec 9 - 13, 2024
Time: 10 AM - 6 PM ET
USD $3,140
Online Virtual Class
Scheduled
Date: Jan 27 - 31, 2025
Time: 10 AM - 6 PM ET
USD $3,140
Online Virtual Class
Scheduled
Date: Mar 3 - 7, 2025
Time: 10 AM - 6 PM ET
USD $3,140
Online Virtual Class
Scheduled
Date: Apr 7 - 11, 2025
Time: 10 AM - 6 PM ET
USD $3,140
Online Virtual Class
Scheduled
Date: May 26 - 30, 2025
Time: 10 AM - 6 PM ET
USD $3,140
Online Virtual Class
Scheduled
Date: Jul 7 - 11, 2025
Time: 10 AM - 6 PM ET